Air Cooled Liquid Cooler Application Request:
For AOCH - AOCHM Series

Email form to: sales@aihti.com or engineering@aihti.com or fax to 434-757-1810

Contact Name ___________________________ Telephone ___________________________ Date ______

Company Name __________________________ Email ___________________________

Address: __________________________ Fax ___________________________

Hot Side

<table>
<thead>
<tr>
<th>Fluid Type</th>
<th>Cold Side</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ambient Air</td>
</tr>
<tr>
<td></td>
<td>Altitude</td>
</tr>
</tbody>
</table>

- Density: __________ lb/ft³
- Viscosity: __________ cP
- Thermal Conductivity: __________ Btu/hr·ft·°F
- Specific Heat: __________ Btu/lb·°F

1. Flow Rate: __________
2. Temperature In: __________
3. Desired Temperature Out: __________
4. Heat Load: __________

To properly size the heat exchanger we need 3 of the 4 parameters on the Hot Side.

- Cabinet Material:
 - Standard: Steel □
 - Galvanized Steel □
 - Stainless Steel □
- Options: Epoxy Paint □

- Tubing Material:
 - Standard: Copper □
 - 90/10 Copper Nickel □
 - Stainless Steel □
- Options: Epoxy Paint □

- Coating:
 - Standard Enamaled □
 - Gray Paint □
- Options: Epoxy Paint □

- Fins:
 - Standard Aluminum □
 - Copper □
 - Heresite □
- Options: Epoxy Paint □

Motor
- 60Hz: 230/460 Volt, 3 Phase □
- 115/230 Volt, 1 Phase □
- 575 Volt, 3 Phase □
- 50Hz: 230/400 Volt, 3 Phase □
- 110/220 Volt, 1 Phase □
- Hydraulic Motor □

Comment: ___________________________
AIR COOLED

LIQUID COOLERS

- Thermal capacity to 210hp (157Kw).
- Severe duty construction with OSHA guard.
- Serviceable Core®.
- Operating temperature of 300°F at 300 PSI.
- Electric or hydraulic drive.
- Optional: internal built-in bypass relief valve.

- Computer generated data sheet available for any application
- Can be customized to fit any applications.
- Cools: Fluid power systems, rock crushers, presses, shears, lubrication equipment for paper machinery, gear drives, marine transmissions, etc.
AOCH & AOCHM Series overview

AOCH SERIES with electric drive

Industrial air-cooled liquid coolers, high performance six row rolled tube heat exchangers with direct electric drive cooling fan, OSHA guard, and air directing louvers. Rated operating temperature of 300°F at 300 PSIG. Services standard flow rates from 4 to 250 GPM. Thermal capacity up to 210 hp (157Kw). NPT, flange, or SAE straight thread port connections. Optional built-in bypass relief valve 30 PSI or 65 PSI. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrications oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed material.

AOCHM SERIES with hydraulic drive

Industrial air-cooled liquid coolers with hydraulic fan drive, high performance six row rolled tube heat exchangers with direct electric drive cooling fan, OSHA guard, and air directing louvers. Rated operating temperature of 300°F at 300 PSIG. Services standard flow rates from 4 to 250 GPM. Thermal capacity up to 210 hp (157Kw). NPT, flange, or SAE straight thread port connections. Optional built-in bypass relief valve 30 PSI or 65 PSI. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrications oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed material.

AOCH & AOCHM SERIES with optional screen

Same rugged features as standard AOCH & AOCHM Series with fabricated steel front screen in place of louvers.

AOCS Series with electric drive

Severe duty air-cooled liquid coolers, super capacity, rolled tube heat exchangers with direct electric drive cooling fan, OSHA guard, and heavy duty front screen. Rated operating temperature of 300°F at 200 PSIG. Standard flow rates from 10 to 600 GPM. NPT, ANSI flange, or SAE code 61 four bolt flange port connections. Optional built-in bypass relief valve 30 PSI or 65 PSI. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrications oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed material.
AOCH & AOCHM Series construction

HIGH PERFORMANCE TURBULATOR

Exclusive American Industrial Turbulators (installed in every flow tube) increase heat transfer by more than 100%.

American Industrial Turbulators eliminate the laminar flow condition normally associated with other smooth tube heat exchangers. High viscosity hydraulic and lubricating oils are easily cooled by this new state-of-the-art turbulator.

SERVICEABLE CORE ®

Core covers disassemble for easy access and cleaning. Repairable design for applications that require limited down time. Roller expanded tube to tube-sheet joint.

100% mechanical bond. No braze or solder joint to fatigue fail, corrode, crack, etc.. No rubber grommets to replace. Positive gasket seal is field replaceable for field maintenance or repair.

SUPERIOR COOLING FINS

Copper tubes are mechanically bonded to highly efficient aluminum cooling fins. Die-formed fin collars provide a durable precision fit for maximum heat transfer.

Custom fin design forces air to become turbulent and carry heat away more efficiently than old flat fin designs.

CONSTRUCTION MATERIALS & RATINGS

<table>
<thead>
<tr>
<th>Standard Construction Materials</th>
<th>Optional Construction Materials</th>
<th>Standard Unit Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubes Copper</td>
<td>Carbon Steel, 90/10 Cu.Ni, 316L Stainless Steel</td>
<td>Operating Pressure 300 psig</td>
</tr>
<tr>
<td>Fins Aluminum</td>
<td>Copper</td>
<td>Operating Temperature 300 °F</td>
</tr>
<tr>
<td>Turbulators Steel</td>
<td>Brass</td>
<td>Max. Fan Over-speed 10 %</td>
</tr>
<tr>
<td>Tube sheet Steel</td>
<td>316L Stainless Steel</td>
<td>Max. Ambient Conditions 104 °F</td>
</tr>
<tr>
<td>Removable Tanks Steel</td>
<td>316L Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Connection pipes Steel</td>
<td>316L Stainless Steel</td>
<td></td>
</tr>
<tr>
<td>Cabinet & frame Steel</td>
<td>316L Stainless Steel, Galvanized Steel</td>
<td></td>
</tr>
<tr>
<td>Fan Blade Aluminum</td>
<td>Plastic, Non-sparking, Steel</td>
<td></td>
</tr>
<tr>
<td>Fan Guard Zinc Plated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasket Hypalon Composite</td>
<td>Viton, Nitrile, Composites</td>
<td></td>
</tr>
</tbody>
</table>

note: AIHTI reserves the right to make reasonable design changes without notice.
AOCH & AOCHM Series performance

ONE PASS

TWO PASS

PERFORMANCE CALCULATION

\[F_s = \frac{\text{Horsepower to be removed (HP) x 2545 x } C_v}{\text{°F (Oil Leaving) - Ambient Air Entering)} = \frac{\text{BTU}}{\text{hr °F}} \]

\[D = 4 \text{ PSI} \]
\[E = 5 \text{ PSI} \]
\[F = 10 \text{ PSI} \]
\[G = 15 \text{ PSI} \]
\[H = 20 \text{ PSI} \]
\[I = 25 \text{ PSI} \]
\[J = 30 \text{ PSI} \]
\[K = 35 \text{ PSI} \]
\[L = 40 \text{ PSI} \]

OIL PRESSURE DROP (PSI) CODE

Note: When a model selection has been made, record whether the selection was from the one pass curve or the Two Pass curve so that the unit can be properly plumbed. Incorrect installation can seriously affect the performance.
Sizing
The performance curves provided are for petroleum oil at 50 ssu viscosity. However, fluids with characteristics other than the above mentioned may be used by applying a correction factor.

Heat Load
If the heat load is unknown, a horsepower value can be calculated by first determining the systems total potential. For a basic hydraulic system, it is helpful to know whether the system is open loop (with a large reservoir) or closed loop (normally on mobile equipment, with a very small reservoir). System potentials may be calculated quickly by using one of the two methods below.

There are some system parameters that will be required to properly accomplish the sizing calculations. Without system parameters, it is difficult to determine the optimal heat exchanger size. Normally many of the system parameters can be found on hydraulic schematics or on tags located on the actual equipment. Following are some basic parameters that you should try to acquire before attempting the sizing calculations. However, it is not necessary to have every parameter listed below.

- Main system flow rate (gpm) & operating pressure (psi).
- Electric motor HP driving hydraulic pump (if more than one add up the Hp for all).
- Desired temperature (°F).
- Fluid type (SAE 10, 20, 30, etc.).
- Ambient air temperature (warmest day).
- Desired fan drive (hydraulic, electric, 12-24V DC, etc.).
- BTUs or HP to be cooled (normally given for lubrication systems).
- Maximum pressure drop allowed through the heat exchanger.
- Space available for heat exchanger (LxWxH).
- External air condition (dirty, papers, etc).

Example: 50 HP motor x 0.3 = 15 HP heat load

Method 1 Normally used for open loop circuits. Multiply the main hydraulic systems Electric Motor Name plate Horsepower by a heat removal factor (normally 30-50%).

Method 2 Normally used when the HP input potential is unknown or for mobile applications where diesel engines operate the entire system.

CV VISCOSITY CORRECTION FACTORS

<table>
<thead>
<tr>
<th>Average Liquid Temperature</th>
<th>SAE 5</th>
<th>SAE 10</th>
<th>SAE 20</th>
<th>SAE 30</th>
<th>SAE 40</th>
<th>ISO 22</th>
<th>ISO 32</th>
<th>ISO 46</th>
<th>ISO 68</th>
<th>ISO 100</th>
<th>ISO 150</th>
<th>ISO 220</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1.11</td>
<td>1.15</td>
<td>1.25</td>
<td>1.38</td>
<td>1.45</td>
<td>1.08</td>
<td>1.14</td>
<td>1.18</td>
<td>1.26</td>
<td>1.37</td>
<td>1.43</td>
<td>1.56</td>
</tr>
<tr>
<td>110</td>
<td>1.09</td>
<td>1.12</td>
<td>1.20</td>
<td>1.32</td>
<td>1.40</td>
<td>1.06</td>
<td>1.13</td>
<td>1.16</td>
<td>1.25</td>
<td>1.31</td>
<td>1.39</td>
<td>1.48</td>
</tr>
<tr>
<td>120</td>
<td>1.06</td>
<td>1.10</td>
<td>1.17</td>
<td>1.27</td>
<td>1.35</td>
<td>1.04</td>
<td>1.11</td>
<td>1.14</td>
<td>1.20</td>
<td>1.27</td>
<td>1.35</td>
<td>1.40</td>
</tr>
<tr>
<td>130</td>
<td>1.04</td>
<td>1.08</td>
<td>1.13</td>
<td>1.24</td>
<td>1.29</td>
<td>1.03</td>
<td>1.09</td>
<td>1.13</td>
<td>1.17</td>
<td>1.24</td>
<td>1.30</td>
<td>1.34</td>
</tr>
<tr>
<td>140</td>
<td>1.03</td>
<td>1.05</td>
<td>1.11</td>
<td>1.19</td>
<td>1.25</td>
<td>1.02</td>
<td>1.08</td>
<td>1.10</td>
<td>1.16</td>
<td>1.20</td>
<td>1.26</td>
<td>1.30</td>
</tr>
<tr>
<td>150</td>
<td>1.01</td>
<td>1.04</td>
<td>1.09</td>
<td>1.16</td>
<td>1.22</td>
<td>1.02</td>
<td>1.06</td>
<td>1.09</td>
<td>1.13</td>
<td>1.17</td>
<td>1.22</td>
<td>1.27</td>
</tr>
<tr>
<td>200</td>
<td>0.98</td>
<td>0.99</td>
<td>1.01</td>
<td>1.04</td>
<td>1.07</td>
<td>0.98</td>
<td>0.99</td>
<td>1.00</td>
<td>1.01</td>
<td>1.02</td>
<td>1.08</td>
<td>1.09</td>
</tr>
<tr>
<td>250</td>
<td>0.95</td>
<td>0.96</td>
<td>0.97</td>
<td>0.98</td>
<td>0.99</td>
<td>0.95</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
<td>0.97</td>
<td>0.99</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Cp PRESSURE DROP CORRECTION FACTORS

<table>
<thead>
<tr>
<th>Average Liquid Temperature</th>
<th>SAE 5</th>
<th>SAE 10</th>
<th>SAE 20</th>
<th>SAE 30</th>
<th>SAE 40</th>
<th>ISO 22</th>
<th>ISO 32</th>
<th>ISO 46</th>
<th>ISO 68</th>
<th>ISO 100</th>
<th>ISO 150</th>
<th>ISO 220</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.00</td>
<td>2.40</td>
<td>4.40</td>
<td>6.40</td>
<td>8.80</td>
<td>1.07</td>
<td>1.53</td>
<td>1.82</td>
<td>2.54</td>
<td>4.19</td>
<td>6.44</td>
<td>9.38</td>
</tr>
<tr>
<td>110</td>
<td>1.70</td>
<td>2.10</td>
<td>3.60</td>
<td>5.10</td>
<td>6.70</td>
<td>1.04</td>
<td>1.45</td>
<td>1.72</td>
<td>2.35</td>
<td>3.73</td>
<td>5.70</td>
<td>8.33</td>
</tr>
<tr>
<td>120</td>
<td>1.50</td>
<td>1.80</td>
<td>3.00</td>
<td>4.20</td>
<td>5.60</td>
<td>1.02</td>
<td>1.38</td>
<td>1.60</td>
<td>2.15</td>
<td>3.26</td>
<td>4.91</td>
<td>7.23</td>
</tr>
<tr>
<td>130</td>
<td>1.40</td>
<td>1.60</td>
<td>2.60</td>
<td>3.40</td>
<td>4.50</td>
<td>0.99</td>
<td>1.30</td>
<td>1.49</td>
<td>1.94</td>
<td>2.80</td>
<td>4.14</td>
<td>6.19</td>
</tr>
<tr>
<td>140</td>
<td>1.30</td>
<td>1.50</td>
<td>2.23</td>
<td>2.90</td>
<td>3.70</td>
<td>0.97</td>
<td>1.23</td>
<td>1.38</td>
<td>1.75</td>
<td>2.38</td>
<td>3.47</td>
<td>5.20</td>
</tr>
<tr>
<td>150</td>
<td>1.20</td>
<td>1.30</td>
<td>1.90</td>
<td>2.50</td>
<td>3.10</td>
<td>0.95</td>
<td>1.17</td>
<td>1.30</td>
<td>1.61</td>
<td>2.04</td>
<td>2.90</td>
<td>4.35</td>
</tr>
<tr>
<td>200</td>
<td>0.93</td>
<td>0.96</td>
<td>1.20</td>
<td>1.40</td>
<td>1.60</td>
<td>0.89</td>
<td>0.99</td>
<td>1.08</td>
<td>1.18</td>
<td>1.33</td>
<td>1.59</td>
<td>1.74</td>
</tr>
<tr>
<td>250</td>
<td>0.81</td>
<td>0.82</td>
<td>0.92</td>
<td>0.97</td>
<td>1.05</td>
<td>0.85</td>
<td>0.93</td>
<td>0.96</td>
<td>1.03</td>
<td>1.11</td>
<td>1.22</td>
<td>1.22</td>
</tr>
</tbody>
</table>

AOCH & AOCHM Series selection

 Multiply system pressure by the flow rate of the main system divided by 1714 equals system potential (HP). Multiply the system HP by a heat removal factor (Normally 25-35%). Note: In some closed loop systems only a portion of the total system flow is directed through the heat exchanger. This may affect the cooler selection process substantially. You may contact our factory for additional technical assistance.

Example: (2000 psi x 60 gpm) = [70 HP x .25] = 17.5 HP heat load

Determining Fs value
To determine the proper size heat exchanger for your application, use the following equation to first determine the (Fs) factor:

\[Fs = \left(\frac{\text{heat load (HP)} \times 2545 \times \text{Cv}}{\text{°F (oil leaving - air entering)}} \right) \]

Example:

Heat load = 17.5 HP
Cv = 1.14 (SAE 20) determined from chart. [Located on page 5.]
Desired operating temperature = 120 °F

Ambient air temp. = 100 °F

\[Fs = \left(\frac{17.5 \times 2545 \times 1.14}{120 - 100} \right) = 2539 \]

Selection
To select a model, locate the flow rate (GPM) at the bottom of the flow vs Fs graph. Proceed upward until the GPM flow rate intersects with the calculated Fs. The curve closest above the intersection point will meet these conditions.

Example:

Fs = 2539 = Model = AOCH, AOCHM - 35
GPM = 60
PASSES = 1

Pressure differentials
Determine the oil pressure drop from the curves as indicated. For viscosities other than 50 ssu, multiply the actual indicated pressure drop for your GPM flow by the value shown in the pressure differential curve for your viscosity value.

Example:

Model 35 @ 60 gpm & 50 ssu -1 pass curve-
Indicated pressure drop 2.4 psi (Approx)
\{ 2.4 psi x 2.8Cp (for SAE-20 oil) \} = 6.72 corrected psi

Note: AHTI reserves the right to make reasonable design changes without notice.

AOCH Series dimensions

Model Dimensions (inches)

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCH - 10</td>
<td>19.00</td>
<td>13.13</td>
<td>8.88</td>
<td>15.88</td>
<td>19.48</td>
<td>6.56</td>
<td>12.50</td>
<td>10.50</td>
<td>21.00</td>
<td>17.13</td>
<td>—</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>AOCH - 20</td>
<td>23.81</td>
<td>18.38</td>
<td>14.00</td>
<td>20.56</td>
<td>19.48</td>
<td>9.19</td>
<td>17.19</td>
<td>15.75</td>
<td>25.81</td>
<td>21.81</td>
<td>—</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>AOCH - 30</td>
<td>31.63</td>
<td>27.56</td>
<td>23.19</td>
<td>28.50</td>
<td>23.33</td>
<td>13.78</td>
<td>25.13</td>
<td>24.94</td>
<td>33.63</td>
<td>29.75</td>
<td>11.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>AOCH - 35</td>
<td>33.81</td>
<td>30.19</td>
<td>25.81</td>
<td>30.69</td>
<td>23.06</td>
<td>15.09</td>
<td>27.31</td>
<td>27.56</td>
<td>35.81</td>
<td>31.94</td>
<td>11.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>AOCH - 40</td>
<td>41.63</td>
<td>36.75</td>
<td>32.38</td>
<td>38.50</td>
<td>23.06</td>
<td>18.38</td>
<td>35.13</td>
<td>34.12</td>
<td>43.63</td>
<td>39.75</td>
<td>13.25</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>

* Represents options.

Notes:

1) Removable foot mounting brackets are supplied with unit at no additional charge.
2) 1/2-12 UNC-2B Tabs, 4 points, 8 points on models AOCH - 30, 35 & 40 (top & bottom) for optional mounting purposes.
3) Motor mounting bracket is rotated 90 degrees on AOCH - 5 & 10 units.
4) Dotted line represents motor mounting bracket on AOCH-35 & 40.
5) Louvers are manually adjustable. However, all units are available with a screen front as an option (specify when ordering).
6) All units are available with an optional preset 30 or 65-psi pressure internal bypass valve. (see note "i" on page 155)
7) All units can be connected in one or Two Pass configuration. Refer to piping instructions for detailed operating and maintenance information.

Example of a model:

AOCH - 35 - 3 - S - R65 - 2P

- **Drive Type**
 - N = no motor
 - 1 = single phase
 - 3 = three phase
 - 1EXP = single phase
 - 3EXP = three phase
 - 5 = 575 Volt

- **Connections**
 - Blank = NPT
 - S = SAE O-Ring
 - F = 4 Bolt Flange
 - A = ANSI 150#RF Flange

- **Bypass**
 - R30 = 30psi
 - R65 = 65psi

- **Number of Passes**
 - 1P = 1 pass
 - 2P = 2 pass

- **Coating**
 - Blank = Enamel (standard)
 - G = Galvanize (cabinet)
 - T = Heresite (core)
 - X = Epoxy (cabinet)
 - STS = Stainless Steel (cabinet)

- **Tubing**
 - Blank = Copper
 - U = 90/10 Cu Ni
 - C = Carbon Steel
 - SS = Stainless Steel
AOCH Series motor data

AOCH ELECTRIC MOTOR @ 60 Hz. DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>Phase</th>
<th>Hz</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Enclosure Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>4.6/2.3</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>1.6/0.8</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>3</td>
<td>60</td>
<td>575</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>.8</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>8.6/4.3</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>3.4/1.7</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>575</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>1.5</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-35, AOCH-40</td>
<td>3</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>184T</td>
<td>TEFC</td>
<td>28.0/14.0</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-35, AOCH-40</td>
<td>3</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>182T</td>
<td>TEFC</td>
<td>7.6/3.8</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-35, AOCH-40</td>
<td>3</td>
<td>3</td>
<td>60</td>
<td>575</td>
<td>1800</td>
<td>182T</td>
<td>TEFC</td>
<td>3.3</td>
<td>1.15</td>
<td>NO</td>
</tr>
</tbody>
</table>

AOCH ELECTRIC MOTOR @ 50 Hz. DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>Phase</th>
<th>Hz</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Enclosure Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>1</td>
<td>50</td>
<td>110/220</td>
<td>1500</td>
<td>56</td>
<td>TEFC</td>
<td>7.2/3.6</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>3</td>
<td>50</td>
<td>230/400</td>
<td>1500</td>
<td>56</td>
<td>TEFC</td>
<td>1.6/1.0</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>1</td>
<td>50</td>
<td>110/220</td>
<td>1500</td>
<td>56</td>
<td>TEFC</td>
<td>12.4/6.2</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>3</td>
<td>50</td>
<td>230/400</td>
<td>1500</td>
<td>56</td>
<td>TEFC</td>
<td>3.4/1.8</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-35,AOCH-40</td>
<td>3</td>
<td>1</td>
<td>50</td>
<td>110/220</td>
<td>1500</td>
<td>184T</td>
<td>TEFC</td>
<td>25.0/12.5</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>AOCH-35, AOCH-40</td>
<td>3</td>
<td>3</td>
<td>50</td>
<td>230/400</td>
<td>1500</td>
<td>182T</td>
<td>TEFC</td>
<td>7.6/4.9</td>
<td>1.0</td>
<td>NO</td>
</tr>
</tbody>
</table>

ELECTRIC MOTOR NOTES:

1) All motors are NEMA, high efficiency
2) TEFC motors are available for all models.
3) Motor electrical ratings are an approximate guide and may vary between motor manufacturers. Consult ratings on motor data plate prior to installation and operation.
4) Explosion proof, high temperature, severe duty, chemical, IEC, Canadian Standards Association, and Underwriters Laboratory recognized motors are available upon request.
5) American Industrial reserves the right to enact changes to motor brand, type and ratings regarding horsepower, RPM, FLA, and service factor for standard products without notice. All specific requirements will be honored without change.
6) Fan rotation is clockwise when facing the motor shaft.
7) The above motors contain factory lubricated shielded ball bearings; no additional lubrication is required.
8) **Abbreviation Index**
 - TEFC Totally Enclosed, Fan Cooled
 - X-PROOF Explosion Proof

CLASS I,DIV.1, GROUP D or CLASS II,DIV.2, GROUP F & G EXPLOSION PROOF MOTOR DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>Phase</th>
<th>Hz</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Enclosure Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>1</td>
<td>60</td>
<td>115-208/230</td>
<td>1800</td>
<td>56</td>
<td>X-PROOF</td>
<td>7.4/3.7</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>AOCH-5,10,15,20</td>
<td>1/2</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>56</td>
<td>X-PROOF</td>
<td>2.0/1.0</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>56</td>
<td>X-PROOF</td>
<td>13.0/6.5</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>AOCH-25, AOCH-30</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>56</td>
<td>X-PROOF</td>
<td>3.6/1.8</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>AOCH-35, AOCH-40</td>
<td>3</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>215</td>
<td>X-PROOF</td>
<td>30.0/15.0</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>AOCH-35, AOCH-40</td>
<td>3</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>182</td>
<td>X-PROOF</td>
<td>8.4/4.2</td>
<td>1.0</td>
<td>YES</td>
</tr>
</tbody>
</table>

NOTE: All of the AOCH Series explosion proof motors are available in 50hz upon request as a special...
AOCHM Series dimensions

![Hydraulic Motor Schematic](image)

Dimensions (inches)

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M NPT</th>
<th>M SAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCHM - 5</td>
<td>14.81</td>
<td>11.81</td>
<td>7.69</td>
<td>11.69</td>
<td>15.21</td>
<td>5.90</td>
<td>8.31</td>
<td>9.19</td>
<td>16.81</td>
<td>12.94</td>
<td>—</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>AOCHM - 10</td>
<td>19.00</td>
<td>13.13</td>
<td>8.88</td>
<td>15.88</td>
<td>15.21</td>
<td>6.56</td>
<td>12.50</td>
<td>10.50</td>
<td>21.00</td>
<td>17.13</td>
<td>—</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>AOCHM - 15</td>
<td>20.38</td>
<td>15.75</td>
<td>11.50</td>
<td>17.25</td>
<td>15.21</td>
<td>7.88</td>
<td>13.88</td>
<td>13.12</td>
<td>22.38</td>
<td>18.50</td>
<td>—</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>AOCHM - 20</td>
<td>23.81</td>
<td>18.38</td>
<td>14.00</td>
<td>20.56</td>
<td>15.21</td>
<td>9.19</td>
<td>17.19</td>
<td>15.75</td>
<td>25.81</td>
<td>21.81</td>
<td>—</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>AOCHM - 30</td>
<td>31.63</td>
<td>27.56</td>
<td>23.19</td>
<td>28.50</td>
<td>15.21</td>
<td>13.78</td>
<td>25.13</td>
<td>24.94</td>
<td>33.63</td>
<td>29.75</td>
<td>11.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>AOCHM - 35</td>
<td>33.81</td>
<td>30.19</td>
<td>25.81</td>
<td>30.69</td>
<td>15.21</td>
<td>15.09</td>
<td>27.31</td>
<td>27.56</td>
<td>35.81</td>
<td>31.94</td>
<td>11.00</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>AOCHM - 40</td>
<td>41.63</td>
<td>36.75</td>
<td>32.38</td>
<td>38.50</td>
<td>15.21</td>
<td>18.38</td>
<td>35.13</td>
<td>34.12</td>
<td>43.63</td>
<td>39.75</td>
<td>13.25</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>

* Represents options.

Notes:
1. Removable foot mounting brackets are supplied with unit at no additional charge.
2. 1/2-12 UNC-2B Tabs, 4 points, 8 points on models AOCHM - 30, 35 & 40 (top & bottom) for optional mounting purposes.
3. Motor mounting bracket is rotated 90 degrees on AOCHM - 5 & 10 units.
4. Louvers are manually adjustable. However, all units are available with a screen front as an option (specify when ordering).
5. All units are available with an optional preset 30 or 65-psi pressure bypass valve. (see note "i" on page 155)
6. All units can be connected in one or Two Pass configuration. Refer to piping instructions for detailed operating and maintenance information.

Example of a model:

```
AOCHM - 40 - 9 - S - R65 - 2P -
```

- **Model**
 - AOCHM - 40
 - Size: 9
- **Drive Type**
 - N = No motor
 - 9 = Hydraulic motor
- **Connections**
 - Blank = NPT
 - S = SAE O-Ring
 - F = 4 Bolt Flange
 - A = ANSI 150# RF Flange
- **Tubing**
 - Blank = Copper
 - U = 90/10 Cu Ni
 - C = Carbon Steel
 - SS = Stainless Steel
- **Coating**
 - Blank = Enamel (standard)
 - G = Galvanize (cabinet)
 - T = Heresite (core)
 - X = Epoxy (cabinet)
 - STS = Stainless Steel (cabinet)
- **Bypass**
 - R30 = 30psi
 - R65 = 65psi
- **Number of Passes**
 - 1P = 1 pass
 - 2P = 2 pass

(For a complete list of options, refer to page 155.)
HYDRAULIC MOTOR NOTES:

1) Standard units are supplied with a bi-directional hydraulic gear motor for the fan drive. The gear motor requires an external case drain to be used during operation. The external case drain should be connected directly to the hydraulic reservoir or a return line with not greater than 10 PSI back pressure. (NOTE: Failure to properly connect and use the external case drain during motor operation could result in motor failure and external leakage of hydraulic fluid.

2) Hydraulic motor flow requirements are provided with an efficiency rating of approximately 85%. Pressure requirements are calculated theoretically minimum operating requirements.

3) Shaft adapters are used to bridge the differences in length between the fan and hydraulic motor.

4) Maximum degree of fluid contamination, class 18/15 according to ISO 4406. Therefore, it is recommended to use a filter with retention rating of B20+. For longer life, it is recommended to use class 17/14 achievable with filter B10+-100.

5) Fan rotation is clockwise when facing the motor shaft.

6) Optional displacement motors available upon request.

7) American industrial reserves the right to enact changes to hydraulic motor, brand, type, ratings, port sizes, or any additional non-specified attribute for standard products without notice. All specific requirements will be honored without change pending availability.

COMMON DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Motor RPM</th>
<th>Displacement in³/Rev</th>
<th>Required Flow GPM</th>
<th>Required Flow LPM</th>
<th>Min. pressure start / run psi</th>
<th>Case Drain Size</th>
<th>SAE O-Ring</th>
<th>Side Port SAE O-Ring Size</th>
<th>Max. Continuous Pressure PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCHM - 5 -</td>
<td>1725</td>
<td>0.43</td>
<td>6.5</td>
<td>24.6</td>
<td>300</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 10 -</td>
<td>1725</td>
<td>0.43</td>
<td>6.5</td>
<td>24.6</td>
<td>300</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 15 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 20 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 25 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 30 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 35 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 40 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
</tbody>
</table>

NOTES: * Represents options.

HYDRAULIC MOTOR DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>Motor RPM</th>
<th>Displacement in³/Rev</th>
<th>Required Flow GPM</th>
<th>Required Flow LPM</th>
<th>Min. pressure start / run psi</th>
<th>Case Drain Size</th>
<th>SAE O-Ring</th>
<th>Side Port SAE O-Ring Size</th>
<th>Max. Continuous Pressure PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOCHM - 5 -</td>
<td>1725</td>
<td>0.43</td>
<td>6.5</td>
<td>24.6</td>
<td>300</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 10 -</td>
<td>1725</td>
<td>0.43</td>
<td>6.5</td>
<td>24.6</td>
<td>300</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 15 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 20 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 25 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 30 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 35 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
<tr>
<td>AOCHM - 40 -</td>
<td>1725</td>
<td>0.68</td>
<td>6.0</td>
<td>22.7</td>
<td>400</td>
<td>#6 9/16-18</td>
<td>A</td>
<td>#12; 11/16-12</td>
<td>3000</td>
</tr>
</tbody>
</table>

NOTES: * Represents options.

PIPING HOOK UP shown with relief valve

One Pass

Two Pass

FLUID IN

CAPPED

FLUID OUT

FLUID OUT

FLUID IN

Note: AIHTI reserves the right to make reasonable design changes without notice.
AOCH & AOCHM Series installation & maintenance

PIPING HOOK UP

Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person and mark it on the receiving bill before accepting the freight. Make sure that the core and fan are not damaged. Rotate the fan blade to make sure that it moves freely. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. *Since the warranty is based upon the unit date code located on the model identification tag, removal or manipulation of the identification tag will void the manufacturers warranty.*

b) When handling the heat exchanger, special care should be taken to avoid damage to the core and fan. All units are shipped with wood skids for easy forklift handling.

c) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

d) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warrantee coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any air cooled heat exchanger series cooler. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

f) Heat exchanger should be securely fastened using the mounting foot brackets (included). All mounting holes should be used to secure unit into place. Optional horizontal mounting with vertical airflow is allowable by removing the foot brackets and using the (4 or 8) 1/2”-13 screw hard points located on the top and bottom panel for fastening. Heat exchanger unit must be set into a fabricated channel type frame with provision for additional motor support for heavy motors in conjunction with 1/2” frame fastening bolt points. Since the units are normally operated in the vertical position (horizontal airflow) reinforced motor support is suggested.

h) Connections should be made in "one pass" or "Two Pass" configurations exactly as indicated in the "piping hook up" illustration above. The process flow entering the "Fluid IN" port and exiting the "Fluid OUT" port eliminates air pockets and assures that the unit will stay completely flooded. Flexible hose can be applied to reduce the risk of core failure due to thermal expansion or system vibration. Piping alignment and support is required for hoses longer than four feet in length and for piping exerting more than 20 lbs of dynamic force. It is recommended that filtration be located ahead of the heat exchanger to prevent excessive backpressure and clogging.
AOCH & AOCHM Series *installation & maintenance*

i) With respect to the heat exchangers nozzle size, flow line sizes should be sized to handle the appropriate flow rate and system pressure drop requirements, normally flow line rates of about 8-12 feet per second and inlet pressure less than 100psig are experienced. If the flow line size is larger than the heat exchanger nozzle size, additional pressure loss beyond the published pressure loss data may occur.

j) Electric motors should be connected only to supply source of the same characteristics as indicated on the electric motor information plate. Prior to starting, verify that the motor and fan spin freely without obstruction. Check carefully that the fan turns in the correct rotation direction (normally counter clockwise) from the motor side (fan direction arrow). Failure to operate the fan in the proper direction could reduce performance or cause serious damage to the heat exchanger or other components. Fan blades should be rechecked for tightness after the first 100 hours of operation.

k) It is important to apply the catalog recommended flow rate for the hydraulic motor that corresponds with the specific model being used. A case drain is required for hydraulic motor installation. Failure to connect case drain can result in motor failure. The proper flow rate and direction to the hydraulic motor are critical to ensure fan direction and RPM. Exceeding the recommended RPM could result in fan failure and cause severe damage to the heat exchanger. See fan rotation on installation diagram.

Maintenance

Regular maintenance intervals based upon the surrounding and operational conditions should be maintained to verify equipment performance and to prevent premature component failure. Since some of the components such as, motors, fans, load adapters, etc... are not manufactured by American Industrial, maintenance requirements provided by the manufacture must be followed.

a) Inspect the entire heat exchanger and motor/fan assembly for loosened bolts, loose connections, broken components, rust spots, corrosion, fin/coil clogging, or external leakage. Make immediate repairs to all affected areas prior to restarting and operating the heat exchanger or its components.

b) Heat exchangers operating in oily or dusty environments will often need to have the coil cooling fins cleaned. Oil or clogged fins should be cleaned by carefully brushing the fins and tubes with water or a non-aggressive degreasing agent mixture *(Note: Cleaning agents that are not compatible with copper, brass, aluminum, steel or stainless steel should not be used).* A compressed air or a water stream can be used to dislodge dirt and clean the coil further. Any external dirt or oil on the electric motor and fan assembly should be removed. **Caution:** Be sure to disconnect the electric motor from its power source prior to doing any maintenance.

c) In most cases it is not necessary to internally flush the coil. In circumstances where the coil has become plugged or has a substantial buildup of material, flushing the coil with water or a solvent may be done. Flushing solvents should be non-aggressive suitable for the materials of construction. Serviceable Core® models can be disassembled and inspected or cleaned if required.

d) Most low horsepower electric motors do not require any additional lubrication. However, larger motors must be lubricated with good quality grease as specified by the manufacture at least once every 6-9 months or as directed by the manufacture. T.E.F.C. air ventilation slots should be inspected and cleaned regularly to prevent clogging and starving the motor of cooling air. To maintain the electric motor properly see the manufactures requirements and specifications.

e) Fan blades should be cleaned and inspected for tightness during the regular maintenance schedule when handling a fan blade care must be given to avoid bending or striking any of the blades. Fan blades are factory balanced and will not operate properly if damaged or unbalanced. Damaged fan blades can cause excessive vibration and severe damage to the heat exchanger or drive motor. Replace any damaged fan with an American industrial suggested replacement.

f) Air cooled exchanger cabinets are constructed using 7ga. through 18ga. steel that may be bent back into position if damaged. Parts that are not repairable can be purchased through American Industrial.

g) Coil fins that become flattened can be combed back into position. This process may require removal of the coil from the cabinet.

h) It is not advisable to attempt repairs to brazed joints of a brazed construction coil unless it will be done by an expert in silver solder brazing. Brazed coils are heated uniformly during the original manufacturing process to prevent weak zones from occurring. Uncontrolled reheating of the coil may result in weakening of the tube joints surrounding the repair area. In many instances brazed units that are repaired will not hold up as well to the rigors of the system as will a new coil. American Industrial will not warranty or be responsible for any repairs done by unauthorized sources. Manipulation in any way other than normal application will void the manufactures warranty.

i) Solely at the request of customers, American Industrial provides direct acting internal inlet port to outlet port bypass relief valves as an additional safe guard against surge flow and over pressurization of the heat exchanger. However, American Industrial does not specify, recommend, suggest, guarantee, or warrantee the internal relief valve or its performance to safe guard the heat exchanger from damage or prevent failure due to excessive flow or over pressurization. It is the ultimately the sole responsibility of the customer/user to verify with the original equipment manufacture all conditions associated with applying an additional system relief valve prior to application.
AOCH & AOCHM Series installation & maintenance

Serviceable Core® Maintenance
Units containing a Serviceable Core® have bolted manifold covers that can be removed for cleaning or repair purposes.

Servicing Sequence
American Industrial has gone to great lengths to provide components that are repairable. If the heat exchanger core requires internal cleaning or attention the following steps will explain what must be done to access the internal tubes. Be sure to order gasket kits or repair parts prior to removal and disassembly to minimize down time.

a) To clean the internal tubes first remove all connection plumbing from the unit.

b) Be sure the unit is drained of all water etc...

c) Place the heat exchanger in an area that it can be accessed from all sides. Remove the core from the cabinet if required (AOCH, AOCS).

d) Mark the cover and tube-sheet for both covers so that they can be replaced into the same position when finished. Remove the manifold cover bolts and hardware and place them into a secure place.

e) The manifold covers are tightly compressed and may need some prying to separate them from the gasket, physically remove the cover assemblies from both sides.

f) The tubes and turbulators are now accessible for cleaning. Note: turbulators are installed on AOCH & AOCS cores only. If you need to remove the turbulator that runs through the tubing, it will be necessary to first squeeze the flattened end of the protruding turbulator, so that on end will fit through the tube. From the opposite end pull the turbulator out. You may need to use pliers to grip and pull the turbulators out, especially if there is debris lodged inside. As the turbulators come out, most of the dirt will too, so be prepared. It is suggested that gloves be worn when handling the turbulators as they may be sharp.

We suggest a mild water-soluble degreaser be used with a brush. Tubing I.D. is approximately .325 a plastic bristle brush on a rod will work best for cleaning the tubes. Steel brushes should be avoided since the steel is harder than the copper tubing and may heavily score the tubes if used.

g) If there are any leaking tubes you may plug them by carefully forcing a soft metal plug into the hole and tapping it tight. You may in some cases weld the leaking tube shut however, care should be taken since excessive heat may cause surrounding tube joints to loosen and leak.

h) When finished cleaning or repairing, be sure to replace ALL of the turbulators back into any open tubes. When the turbulators protrude from the opposite end flatten them again so they are tight and cannot be removed.

i) When finished reattach the manifold covers in the same position they were removed, using new gaskets, bolts, and hardware. We suggest using a torque wrench to final tighten the bolts.

j) Torque Specifications: For 5/16" bolts 22-23 ft-lbs, for 3/8" bolts to 38-42 ft-lbs. Since bolts and hardware can physically fatigue during application we suggest new bolt kits be used when reassembling.

AOCHL Series
Air Cooled Liquid Cooler

for high capacity with multiple motors

See page 182