Air Cooled Liquid Cooler Application Request:

For EOC and EOCF Series

Email form to: sales@aihti.com or engineering@aihti.com or fax to 434-757-1810

<table>
<thead>
<tr>
<th>Contact Name</th>
<th>Telephone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Name</td>
<td>Email</td>
<td></td>
</tr>
<tr>
<td>Address:</td>
<td>Fax</td>
<td></td>
</tr>
</tbody>
</table>

Hot Side

- **Fluid Type**: _______
- **Density**: [lb/ft³]
- **Viscosity**: [cP]
- **Thermal Conductivity**: [Btu/hr*ft°F]
- **Specific Heat**: [Btu/lb*°F]

<table>
<thead>
<tr>
<th>1. Flow Rate</th>
<th>1. Operating Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Temperature In</td>
<td>2. Allowable Pressure Drop</td>
</tr>
<tr>
<td>3. Desired Temperature Out</td>
<td></td>
</tr>
<tr>
<td>4. Heat Load</td>
<td></td>
</tr>
</tbody>
</table>

To properly size the heat exchanger we need 3 of the 4 parameters on the Hot Side.

Cold Side

- **Ambient Air**: _______
- **Altitude**: _______

Cabinet Material:

- **Standard**: Steel [□]
- **Galvanized Steel** [□]
- **Stainless Steel** [□]

Optional Coating:

- **Standard Enameled** [□]
- **Gray Paint** [□]
- **Epoxy Paint** [□]

Tubing Material:

- **Standard**: Copper [□]
- **Stainless Steel** [□]
- **90/10 Copper Nickel** [□]

Optional Coating:

- **Copper** [□]
- **Heresite** [□]

Motor

- **60Hz**: 230/460 Volt, 3 Phase [□]
- **115/230 Volt, 1 Phase** [□]
- **575 Volt, 3 Phase** [□]

Fins

- **Standard Aluminum** [□]
- **Copper** [□]
- **Heresite** [□]

Options:

- **Motor**: 230/400 Volt, 3 Phase [□]
- **110/220 Volt, 1 Phase** [□]
- **Hydraulic Motor** [□]

Comment: __

Note: AIHTI reserves the right to make reasonable design changes without notice.
EOC and EOCF SERIES

INDUSTRIAL & MOBILE AIR COOLED

LIQUID COOLERS

• Standard NPT or SAE models in stock.
• AC - DC or hydraulic fan drives.
• High quality serviceable air filter.
• Operating temperature of 300°F & pressure of 300 PSI.
• Can be customized to fit any applications.
• Cores available in both brazed or serviceable construction

• Computer generated data sheet available for any application
• Adjustable mounting brackets included for easy installation.
• Cools: fluid power systems, injection molding machines, hydraulic presses, gear drives, torque convertors, machine tools, etc...
EOC Series overview

EOC & EOCF with electric drive

Mobile & industrial air-cooled liquid coolers. Serviceable core®, mobile and industrial series heat exchangers available with optional washable filter and integral relief valve, 30 PSI or 65 PSI. Standard single phase, three phase, 12 volt DC (21amp) or 24 volt DC (10.5 amp) motors with single or dual cooling fans. Rated operating temperature of 300°F at 300 PSIG. Standard flow rates to 160 GPM. Thermal capacity up to 225 hp (168 Kw). N PT or SAE strait thread O-ring port connections. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrication oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed materials.

EOC & EOCF with hydraulic drive

Mobile & industrial air-cooled liquid coolers. Serviceable core®, mobile and industrial series heat exchangers available with optional washable filter and integral relief valve, 30 PSI or 65 PSI. Standard hydraulic drive motor(s) with single or dual cooling fans. Rated operating temperature of 300°F at 300 PSIG. Standard flow rates to 160 GPM. Thermal capacity up to 225 hp (168 Kw). N PT or SAE strait thread O-ring port connections. Can be modified to meet your requirements. Suitable for most hydraulic oils, lubrication oils, synthetic compressor oils, ethylene glycol, and many other fluids compatible with listed materials.
HIGH PERFORMANCE TURBULATOR

Exclusive American Industrial Turbulators (installed in every flow tube) increase heat transfer by more than 100%.

American Industrial Turbulators eliminate the laminar flow condition normally associated with other smooth tube heat exchangers. High viscosity hydraulic and lubricating oils are easily cooled by this new state-of-the-art turbulator.

SERVICEABLE CORE ®

Core covers disassemble for easy access and cleaning. Repairable design for applications that require limited down time. Roller expanded tube to tube-sheet joint.

100% mechanical bond. Positive gasket seal is field replaceable for field maintenance or repair.

CONSTRUCTION MATERIALS & RATINGS

<table>
<thead>
<tr>
<th>Standard Construction Materials</th>
<th>Optional Construction Materials</th>
<th>Standard Unit Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tubes</td>
<td>Copper</td>
<td>Stainless Steel or Carbon Steel</td>
</tr>
<tr>
<td>Fins</td>
<td>Aluminum</td>
<td>Copper</td>
</tr>
<tr>
<td>Turbulators</td>
<td>Steel</td>
<td>Stainless Steel or Brass</td>
</tr>
<tr>
<td>Tank</td>
<td>Steel</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Connection pipes</td>
<td>Steel</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>Cabinet & frame</td>
<td>Steel</td>
<td>Galvanized or Stainless Steel</td>
</tr>
<tr>
<td>Fan Blade</td>
<td>Aluminum with steel hub</td>
<td>Plastic, Non-sparking</td>
</tr>
<tr>
<td>Fan Guard</td>
<td>Zinc plated steel</td>
<td>Zinc plated steel</td>
</tr>
</tbody>
</table>

FOR HIGHER PRESSURE AND TEMPERATURE RATING
CONSULT FACTORY
EOC Series performance

EOC - 1PASS SERIES

EOC - 2PASS SERIES

PERFORMANCE CALCULATION

\[F_s = \frac{\text{Horsepower to be removed (HP) x 2545 x Cv}}{\text{°F (Oil Leaving) - Ambient Air Entering}} \]

\[= \text{BTU hr °F} \]

OIL PRESSURE DROP (PSI) CODE

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

*Represents desired fluid leaving the cooler.

Note: When a model selection has been made, record whether the selection was from the one pass curve or the Two Pass curve so that the unit can be properly plumbed. Incorrect installation can seriously affect the performance.

Copyright © 2019 - 2020 American Industrial Heat Transfer, Inc.

355 American Industrial Drive LaCrosse, VA 23950
tel: 434-757-1800 fax: 434-757-1810 email: sales@aihti.com

Note: AHTI reserves the right to make reasonable design changes without notice.
SIZING
To properly size a DC fan drive air-cooled oil cooler for mobile equipment, you should first determine some basic parameters associated with the system.

HEAT LOAD
There are some system parameters that will be required to properly accomplish the sizing calculations. Without system parameters, it is difficult to determine the optimal heat exchanger size. Normally many of the system parameters can be found on hydraulic schematics or on tags located on the actual equipment. Following are some basic param-eters that you should try to acquire before attempting the sizing calculations. However, it is not necessary to have every parameter listed below.

- Main system flow rate (gpm) & working pressure (psi).
- Electric motor HP driving hydraulic pump (if more than one add up the HP for all).
- Desired temperature (°F).
- Fluid type (SAE 10, 20, 30, etc....).
- Ambient air temperature (warmest day).
- Desired fan drive (hydraulic, electric, 12-24V DC, etc...).
- BTU’s or HP to be cooled (normally given for lubrication systems).
- Maximum pressure drop allowed through the heat exchanger.
- Space available for heat exchanger (LxWxH).
- External air condition (dirty, papers, etc...).

In many instances the heat load must be determined by using a “total potential” method. This total potential or horse power method is the most common method, and is the simplest way to determine basic heat rejection requirements for mobile hydraulic systems. The total potential is equal to the maximum operating flow and pressure that are generated by the system under full load. To determine the total potential (HP) use the following formula.

\[HP = \left(\text{System Pressure (PSI)} \times \text{System flow (GPM)} \right) / 1714 \]

Example:
\[HP = (3000 \text{ psi} \times 40 \text{ gpm}) / 1714 = 70 \text{ HP or the total input potential} \]

To determine the system heat load in BTU / HR we must use a percentage \((v)\) of the system potential HP. The factor \((v)\) can be calculated by adding up the actual inefficiencies of a system; however, for most applications a \((v)\) value of 25% - 30% can be used.

Example:
70 HP \times .25 = 17.5 HP heat

To convert the horsepower of heat into BTU/HR use the formula below:

\[\text{HP x 2542 = BTU/HR} \]

Example:
17.5 HP \times 2542 = 44,538 BTU/HR

Applying into a return line
For most open loop systems with a vane or gear type fixed delivery pumps. To calculate the Fs value required when applying the air/oil cooler into a return line use the formula.

\[Fs = \frac{\text{Btu/hr} \times Cv}{T \times \text{ambient}} \]

where:
- \(T\) = Desired system oil temperature leaving the cooler °F
- \(T_{\text{ambient}}\) = Ambient air temperature entering the cooler °F
- \(Cv\) = Correction factor for oil viscosity.

Example: ISO68 oil @ 150°F = 1.13 (see chart below)

<table>
<thead>
<tr>
<th>Average Liquid Temperature</th>
<th>Cp PRESSURE DROP CORRECTION FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 5</td>
<td>SAE 10</td>
</tr>
<tr>
<td>100</td>
<td>2.00</td>
</tr>
<tr>
<td>110</td>
<td>1.70</td>
</tr>
<tr>
<td>120</td>
<td>1.50</td>
</tr>
<tr>
<td>130</td>
<td>1.40</td>
</tr>
<tr>
<td>140</td>
<td>1.30</td>
</tr>
<tr>
<td>150</td>
<td>1.20</td>
</tr>
<tr>
<td>200</td>
<td>0.93</td>
</tr>
<tr>
<td>250</td>
<td>0.81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Liquid Temperature</th>
<th>Cv VISCOSITY CORRECTION FACTORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAE 5</td>
<td>SAE 10</td>
</tr>
<tr>
<td>100</td>
<td>1.11</td>
</tr>
<tr>
<td>110</td>
<td>1.09</td>
</tr>
<tr>
<td>120</td>
<td>1.06</td>
</tr>
<tr>
<td>130</td>
<td>1.04</td>
</tr>
<tr>
<td>140</td>
<td>1.03</td>
</tr>
<tr>
<td>150</td>
<td>1.01</td>
</tr>
<tr>
<td>200</td>
<td>0.98</td>
</tr>
<tr>
<td>250</td>
<td>0.95</td>
</tr>
</tbody>
</table>

note: AIHTI reserves the right to make reasonable design changes without notice.
EOC Series selection

APPLYING INTO A CASE DRAIN LINE

In circumstances where the system is a closed loop or when return line flow is not available, the case drain flow can be utilized to help cool the system. However, in many instances, the case drain flow alone will not be enough to reject all of the heat generated by the system. Case drain lines should not be treated as a normal return lines since the pressure drop allowable usually can vary from 2-10 PSI max. Check with your pump manufacturer for the appropriate pressure drop tolerance before applying any cooler. To size the system for case flow or case flow plus any additional flushing loops, please use the following method.

Formula:

\[T_{c \text{ exit}} = \text{The corrected temperature of the oil exiting the cooler.} \]

\[T_{c \text{ exit}} = \left(T - \frac{Q}{(\text{case flow gpm} \times 210)} \right) \]

Example:

\[T_{c \text{ exit}} = \left(150 - \frac{44,538}{(8 \times 210)} \right) = 123.5 \]

\[F_s = \frac{Q \times C_v}{T_{c \text{ exit}} - \text{ambient}} = \frac{44,538 \times 1.13 \text{Cv}}{123.5 \text{°F} - 100 \text{°F}} = 2,142 \]

Re-circulation Cooling Application (Kidney Loop)

When applying any American Industrial air-cooled heat exchanger into a re-circulation (filtration loop) some important differences should be noted. The standard air-cooled heat transfer calculation can be used however some preliminary calculations must be done prior to using the formula. Before applying the standard air-cooled heat transfer formula, the air oil cooler exiting temperature must be derived from:

Example Re-circulation Loop Application

Fluid - Oil SAE 5w
Flow - 15 GPM re-circulating
Desired Reservoir Temp - 125°F
Ambient Temp - 90°F
Input potential 60 HP
Heat to be removed 1/3 x 60HP = 20HP
Fan drive requirements 3/60/230-460 motor.

Step 1

Formula 1

\[\Delta T = \frac{\text{HP (to be removed) x 2545}}{\text{Loop Flow (GPM)}} \]

Example

\[\Delta T = \frac{20\text{HP} \times 2545}{15\text{gpm} \times 210} = 16.6^\circ\text{F} \]

Step 2

Formula 2

\[F_s = \frac{\text{HP(to be removed) x 2545 x CV}}{(T1-\Delta T) - \text{Ambient °F}} \]

Example

\[F_s = \frac{220\text{HP} \times 2545 	imes 1.06}{(125-16.2) - 90^\circ\text{F}} = 2,869.9 \text{ Fs} \]

Step 3

Selection from the heat energy dissipation chart (page 172.) EOC-575-3-2P
See example line 2pass curve.

SELECTION

To select a model, locate the flow rate (GPM) at the bottom of the flow vs Fs graph. Proceed upward until the GPM intersects with the calculated Fs. The curve closest above the intersection point will meet these conditions.

Examples:

Return Line	Case Line	Recirculation Loop
Fs = 1,258 | Fs = 2,142 | Fs = 2,869.9
GPM = 40 “return flow” | GPM = 8 “case flow” | GPM = 15 “loop flow”
Model = EOC-375-4 | Model = EOC-575-4-2P | Model = EOC-575-3-2P

PRESSURE DROP

Determine the oil pressure drop from the curves as indicated. For viscosities other than 50 ssu, multiply the actual indicated pressure drop (psi) for your GPM by the Cp value in the pressure differential curve for your viscosity value.

Examples:

<table>
<thead>
<tr>
<th>EOC-375</th>
<th>EOC-575-2P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated pressure drop</td>
<td>7.8 PSI</td>
</tr>
<tr>
<td>Cp correction factor (pg.173)</td>
<td>1.61</td>
</tr>
<tr>
<td>Corrected Pressure drop</td>
<td>12.56 PSI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motor</th>
<th>Model</th>
<th>Coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>blank = no motor</td>
<td>EOC = standard</td>
<td>blank = Enamel (standard)</td>
</tr>
<tr>
<td>1 = single phase</td>
<td>EOCF = with washable filter</td>
<td>G = Galvanize (cabinet)</td>
</tr>
<tr>
<td>1EXP = explosion proof</td>
<td></td>
<td>T = Heresite (core)</td>
</tr>
<tr>
<td>3 = three phase</td>
<td></td>
<td>X = Epoxy (cabinet)</td>
</tr>
<tr>
<td>3EXP = explosion proof</td>
<td></td>
<td>STS = Stainless Steel (cabinet)</td>
</tr>
<tr>
<td>5 = 575 volt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 = 12v DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 = 24v DC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 = hydraulic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank = one pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2P = two pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection Type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank = NPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S = SAE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blank = Copper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C = Carbon Steel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EOC & EOCF Series *dimensions with electric drive Single Pass*

MODEL EOC - 190 through EOC - 337

- **Model EOC - 190**
 - A: 13.62
 - B: 16.50
 - C: 14.21
 - D NPT: .75
 - #12: 14.75
 - G: 5.00
 - H: 5.00
 - L: 8.00
 - M: 15.00
 - P: 10.31
 - Q: 11.38
 - R: 10.38

- **Model EOC - 220**
 - A: 15.62
 - B: 22.00
 - C: 16.32
 - D NPT: .75
 - #12: 18.69
 - G: 5.00
 - H: 5.00
 - L: 14.00
 - M: 20.50
 - P: 12.31
 - Q: 16.88
 - R: 12.25

- **Model EOC - 249**
 - A: 19.62
 - B: 24.75
 - C: 16.32
 - D NPT: .75
 - #12: 21.44
 - G: 5.00
 - H: 5.00
 - L: 14.00
 - M: 23.25
 - P: 14.00
 - Q: 20.00
 - R: 16.25

- **Model EOC - 337**
 - A: 25.62
 - B: 30.25
 - C: 16.32
 - D NPT: 1.00
 - #16: 26.97
 - G: 5.00
 - H: 5.00
 - L: 21.25
 - M: 28.75
 - P: 12.31
 - Q: 16.88
 - R: 12.25

- **Model EOC - 375**
 - A: 18.50
 - B: 39.00
 - C: 17.75
 - D NPT: 1.25
 - #20: 40.50
 - G: 6.50
 - H: 6.50
 - L: 30.00
 - M: 36.50
 - P: 15.25
 - Q: 21.25
 - R: 15.13

- **Model EOC - 505**
 - A: 22.50
 - B: 41.0
 - C: 17.13
 - D NPT: 1.25
 - #20: 42.50
 - G: 6.50
 - H: 6.50
 - L: 30.00
 - M: 38.50
 - P: 19.25
 - Q: 34.75
 - R: 19.63

- **Model EOC - 545**
 - A: 30.50
 - B: 42.00
 - C: 17.32
 - D NPT: 1.50
 - #24: 43.75
 - G: 9.00
 - H: 9.00
 - L: 30.00
 - M: 39.50
 - P: 19.25
 - Q: 35.75
 - R: 27.50

- **Model EOC - 575**
 - A: 36.50
 - B: 48.00
 - C: 17.32
 - D NPT: 2.00
 - #32: 49.75
 - G: 9.00
 - H: 9.00
 - L: 36.00
 - M: 45.50
 - P: 32.75
 - Q: 41.75
 - R: 33.50

- **Model EOC - 700**
 - A: 38.38
 - B: 51.00
 - C: 21.23
 - D NPT: 2.00
 - #32: 52.75
 - G: 9.00
 - H: 9.00
 - L: 38.00
 - M: 48.50
 - P: 34.00
 - Q: 43.50

- **Optional Filter Screen**

Dimension used only with two pass units

Note: AIHTI reserves the right to make reasonable design changes without notice.
EOC & EOCF Series *dimensions with electric drive - Two Pass*

MODEL EOC - 190 Through EOC - 337

![Diagram](image)

MODEL EOC - 375 Through EOC - 700

![Diagram](image)

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D NPT</th>
<th>D SAE</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J 1/2-13 tab</th>
<th>L</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC - 190</td>
<td>13.62</td>
<td>16.50</td>
<td>14.21</td>
<td>.75</td>
<td>#12</td>
<td>14.75</td>
<td>5.00</td>
<td>5.00</td>
<td>8.00</td>
<td>10.31</td>
<td>11.38</td>
<td>10.38</td>
<td>7.65</td>
<td></td>
</tr>
<tr>
<td>EOC - 220</td>
<td>15.62</td>
<td>22.00</td>
<td>16.32</td>
<td>.75</td>
<td>#12</td>
<td>18.69</td>
<td>5.00</td>
<td>5.00</td>
<td>14.00</td>
<td>12.31</td>
<td>16.88</td>
<td>12.25</td>
<td>10.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 249</td>
<td>19.62</td>
<td>24.75</td>
<td>16.32</td>
<td>.75</td>
<td>#12</td>
<td>21.44</td>
<td>5.00</td>
<td>5.00</td>
<td>14.00</td>
<td>12.31</td>
<td>16.88</td>
<td>12.25</td>
<td>10.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 337</td>
<td>25.62</td>
<td>30.25</td>
<td>16.32</td>
<td>1.00</td>
<td>#16</td>
<td>26.97</td>
<td>5.00</td>
<td>5.00</td>
<td>21.25</td>
<td>22.31</td>
<td>25.00</td>
<td>22.38</td>
<td>19.38</td>
<td></td>
</tr>
<tr>
<td>EOC - 375</td>
<td>18.50</td>
<td>39.00</td>
<td>17.75</td>
<td>1.25</td>
<td>#20</td>
<td>40.50</td>
<td>6.50</td>
<td>6.50</td>
<td>30.00</td>
<td>15.25</td>
<td>33.00</td>
<td>15.13</td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>EOC - 505</td>
<td>22.50</td>
<td>41.00</td>
<td>17.13</td>
<td>1.25</td>
<td>#20</td>
<td>42.50</td>
<td>6.50</td>
<td>6.50</td>
<td>30.00</td>
<td>19.25</td>
<td>34.75</td>
<td>19.63</td>
<td>16.50</td>
<td></td>
</tr>
<tr>
<td>EOC - 545</td>
<td>30.50</td>
<td>42.00</td>
<td>17.32</td>
<td>1.50</td>
<td>#24</td>
<td>43.75</td>
<td>9.00</td>
<td>9.00</td>
<td>30.00</td>
<td>27.25</td>
<td>35.75</td>
<td>27.50</td>
<td>24.63</td>
<td></td>
</tr>
<tr>
<td>EOC - 575</td>
<td>36.50</td>
<td>48.00</td>
<td>17.32</td>
<td>2.00</td>
<td>#32</td>
<td>49.75</td>
<td>9.00</td>
<td>9.00</td>
<td>36.00</td>
<td>32.75</td>
<td>41.75</td>
<td>33.50</td>
<td>29.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 700</td>
<td>38.38</td>
<td>51.00</td>
<td>21.23</td>
<td>2.00</td>
<td>#32</td>
<td>52.75</td>
<td>9.00</td>
<td>9.00</td>
<td>34.00</td>
<td>34.50</td>
<td>34.50</td>
<td>32.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: AIHTI reserves the right to make reasonable design changes without notice.

Copyright © 2019 - 2020 American Industrial Heat Transfer, Inc. 355 American Industrial Drive LaCrosse, VA 23950 tel: 434-757-1800 fax: 434-757-1810 email: sales@aihti.com
EOC & EOCF Electric Motor Data

EOC & EOCF Electric Motor @ 60 Hz. Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>No. of Motors</th>
<th>Phase</th>
<th>Hz</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC-190 thru EOC-337</td>
<td>1/4</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>48</td>
<td>TEFC</td>
<td>1.3</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-190 thru EOC-337</td>
<td>1/4</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>48</td>
<td>TEFC</td>
<td>0.7</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-190 thru EOC-337</td>
<td>1/3</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>575</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>0.6</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-375 thru EOC-575</td>
<td>1/4</td>
<td>2</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>48</td>
<td>TEFC</td>
<td>1.3</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-375 thru EOC-575</td>
<td>1/4</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>48</td>
<td>TEFC</td>
<td>0.7</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-375 thru EOC-575</td>
<td>1/3</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>575</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>0.6</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-700</td>
<td>1.0</td>
<td>2</td>
<td>1</td>
<td>60</td>
<td>115-208/230</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>6.4</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>EOC-700</td>
<td>1.0</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>56</td>
<td>TEFC</td>
<td>1.5</td>
<td>1.15</td>
<td>NO</td>
</tr>
</tbody>
</table>

NOTE: EOC-190 thru EOC-575 quarter horse power single phase / 50 hz available upon request as a special.

EOC & EOCF Electric Motor @ 50 Hz. Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>Phase</th>
<th>Hz</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC - 190 thru EOC - 575</td>
<td>1 / 4</td>
<td>3</td>
<td>50</td>
<td>230/380</td>
<td>1500</td>
<td>48</td>
<td>TEFC</td>
<td>1.7/1.0</td>
<td>1.15</td>
<td>NO</td>
</tr>
<tr>
<td>EOC - 700</td>
<td>1.0</td>
<td>1</td>
<td>50</td>
<td>110/220</td>
<td>1500</td>
<td>56</td>
<td>TEFC</td>
<td>12.8/6.4</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>EOC - 700</td>
<td>1.0</td>
<td>3</td>
<td>50</td>
<td>220/380</td>
<td>1500</td>
<td>56</td>
<td>TEFC</td>
<td>3.5/2.0</td>
<td>1.15</td>
<td>NO</td>
</tr>
</tbody>
</table>

NOTE: All of the EOC & EOCF Series explosion proof motors are available in 50Hz upon request as a special.

DC Electric Motor Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>Current</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Enclosure Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC - 190 thru EOC - 575</td>
<td>1 / 4</td>
<td>DC</td>
<td>12</td>
<td>1800</td>
<td>48</td>
<td>TENV</td>
<td>21</td>
<td>1.0</td>
<td>NO</td>
</tr>
<tr>
<td>EOC - 190 thru EOC - 575</td>
<td>1 / 4</td>
<td>DC</td>
<td>24</td>
<td>1800</td>
<td>48</td>
<td>TENV</td>
<td>10.5</td>
<td>1.0</td>
<td>NO</td>
</tr>
</tbody>
</table>

Class I, Div. 1, Group D or Class II, Div. 2, Group F & G Explosion Proof Motor Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Horse Power</th>
<th>Phase</th>
<th>Hz</th>
<th>Volts</th>
<th>RPM</th>
<th>NEMA Frame</th>
<th>Enclosure Type</th>
<th>Full Load Amperes</th>
<th>Service Factor</th>
<th>Thermal Overload</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC - 190 thru EOC - 575</td>
<td>1 / 4</td>
<td>1</td>
<td>60</td>
<td>115-208/230</td>
<td>1800</td>
<td>48</td>
<td>X-PROOF</td>
<td>2.5</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>EOC - 190 thru EOC - 575</td>
<td>1 / 4</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>48</td>
<td>X-PROOF</td>
<td>0.7</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>EOC - 700</td>
<td>1</td>
<td>1</td>
<td>60</td>
<td>115/230</td>
<td>1800</td>
<td>56</td>
<td>X-PROOF</td>
<td>6.5</td>
<td>1.0</td>
<td>YES</td>
</tr>
<tr>
<td>EOC - 700</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>208-230/460</td>
<td>1800</td>
<td>56</td>
<td>X-PROOF</td>
<td>1.8</td>
<td>1.0</td>
<td>YES</td>
</tr>
</tbody>
</table>

NOTE: All of the EOC & EOCF Series explosion proof motors are available in 50Hz upon request as a special.

Electric Motor Notes:

1. All motors are NEMA, high efficiency.
2. TEFC motors are available for all models.
3. Motor electrical ratings are an approximate guide and may vary between motor manufacturers. Consult ratings on motor data plate prior to installation and operation.
4. Explosion proof, high temperature, severe duty, chemical, IEC, Canadian Standards Association, and Underwriters Laboratory recognized motors are available upon request.
5. American Industrial reserves the right to enact changes to motor brand, type and ratings regarding horsepower, RPM, FLA, and service factor for standard products without notice. All specific requirements will be honored without change.
6. Fan rotation is clockwise when facing the motor shaft.
7. The above motors contain factory lubricated shielded ball bearings.
8. Abbreviation Index

TEFC Totally Enclosed, Fan Cooled
X-PROOF Explosion Proof

Note: AIHTI reserves the right to make reasonable design changes without notice.
EOC & EOCF Series *dimensions with hydraulic drive - Single Pass*

MODEL EOC - 190 Through EOC - 337

![Diagrams of EOC & EOCF Series](image)

COMMON DIMENSIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D NPT</th>
<th>D SAE</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J 1/2-13 tab</th>
<th>L</th>
<th>M</th>
<th>P</th>
<th>Q</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC - 190</td>
<td>13.62</td>
<td>16.50</td>
<td>12.20</td>
<td>.75</td>
<td>#12</td>
<td>14.75</td>
<td>5.00</td>
<td>5.00</td>
<td>8.00</td>
<td>15.00</td>
<td>10.31</td>
<td>11.38</td>
<td>10.38</td>
<td></td>
</tr>
<tr>
<td>EOC - 220</td>
<td>15.62</td>
<td>22.00</td>
<td>14.64</td>
<td>.75</td>
<td>#12</td>
<td>18.69</td>
<td>5.00</td>
<td>5.00</td>
<td>14.00</td>
<td>20.50</td>
<td>12.31</td>
<td>16.88</td>
<td>12.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 249</td>
<td>19.62</td>
<td>24.75</td>
<td>14.19</td>
<td>.75</td>
<td>#12</td>
<td>21.44</td>
<td>5.00</td>
<td>5.00</td>
<td>14.00</td>
<td>23.25</td>
<td>16.31</td>
<td>20.00</td>
<td>16.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 337</td>
<td>25.62</td>
<td>30.25</td>
<td>14.64</td>
<td>1.00</td>
<td>#16</td>
<td>26.97</td>
<td>5.00</td>
<td>5.00</td>
<td>21.25</td>
<td>28.75</td>
<td>22.31</td>
<td>25.00</td>
<td>22.38</td>
<td></td>
</tr>
<tr>
<td>EOC - 375</td>
<td>18.50</td>
<td>39.00</td>
<td>15.14</td>
<td>1.25</td>
<td>#20</td>
<td>40.50</td>
<td>6.50</td>
<td>6.50</td>
<td>30.00</td>
<td>36.50</td>
<td>15.25</td>
<td>33.00</td>
<td>15.13</td>
<td></td>
</tr>
<tr>
<td>EOC - 505</td>
<td>22.50</td>
<td>41.00</td>
<td>15.14</td>
<td>1.25</td>
<td>#20</td>
<td>42.50</td>
<td>6.50</td>
<td>6.50</td>
<td>30.00</td>
<td>38.50</td>
<td>19.25</td>
<td>34.75</td>
<td>19.63</td>
<td></td>
</tr>
<tr>
<td>EOC - 545</td>
<td>30.50</td>
<td>42.00</td>
<td>15.14</td>
<td>1.50</td>
<td>#24</td>
<td>43.75</td>
<td>9.00</td>
<td>9.00</td>
<td>30.00</td>
<td>39.50</td>
<td>27.25</td>
<td>35.75</td>
<td>27.50</td>
<td></td>
</tr>
<tr>
<td>EOC - 575</td>
<td>36.50</td>
<td>48.00</td>
<td>15.29</td>
<td>2.00</td>
<td>#32</td>
<td>49.75</td>
<td>9.00</td>
<td>9.00</td>
<td>36.00</td>
<td>45.50</td>
<td>32.75</td>
<td>41.75</td>
<td>33.50</td>
<td></td>
</tr>
<tr>
<td>EOC - 700</td>
<td>38.38</td>
<td>51.00</td>
<td>15.40</td>
<td>2.00</td>
<td>#32</td>
<td>52.75</td>
<td>9.00</td>
<td>9.00</td>
<td>38.50</td>
<td>48.50</td>
<td>34.00</td>
<td>43.50</td>
<td>34.50</td>
<td></td>
</tr>
</tbody>
</table>

Note: AIHTI reserves the right to make reasonable design changes without notice.

EOC & EOCF Series dimensions with hydraulic drive - Two Pass

MODEL EOC - 190 Through EOC - 337

(TOP VIEW)

MODEL EOC - 375 through EOC - 700

Optional Filter Screen

Air Flow

Drain 3/8" NPT

COMMON DIMENSIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D NPT</th>
<th>D SAE</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>J 1/2-1/16 tab</th>
<th>L</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC - 190 - *</td>
<td>13.62</td>
<td>16.50</td>
<td>12.20</td>
<td>.75</td>
<td>#12</td>
<td>14.75</td>
<td>5.00</td>
<td>5.00</td>
<td>8.00</td>
<td>10.31</td>
<td>11.38</td>
<td>10.38</td>
<td>7.65</td>
<td></td>
</tr>
<tr>
<td>EOC - 220 - *</td>
<td>15.62</td>
<td>22.00</td>
<td>14.64</td>
<td>.75</td>
<td>#12</td>
<td>18.69</td>
<td>5.00</td>
<td>5.00</td>
<td>14.00</td>
<td>12.31</td>
<td>16.88</td>
<td>12.25</td>
<td>10.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 249 - *</td>
<td>19.62</td>
<td>24.75</td>
<td>14.19</td>
<td>.75</td>
<td>#12</td>
<td>21.44</td>
<td>5.00</td>
<td>5.00</td>
<td>14.00</td>
<td>16.31</td>
<td>20.00</td>
<td>16.25</td>
<td>15.00</td>
<td></td>
</tr>
<tr>
<td>EOC - 337 - *</td>
<td>25.62</td>
<td>30.25</td>
<td>14.64</td>
<td>1.00</td>
<td>#16</td>
<td>26.97</td>
<td>5.00</td>
<td>5.00</td>
<td>21.25</td>
<td>22.31</td>
<td>25.00</td>
<td>22.38</td>
<td>19.38</td>
<td></td>
</tr>
<tr>
<td>EOC - 375 - *</td>
<td>18.50</td>
<td>39.00</td>
<td>15.14</td>
<td>1.25</td>
<td>#20</td>
<td>40.50</td>
<td>6.50</td>
<td>6.50</td>
<td>30.00</td>
<td>15.25</td>
<td>33.00</td>
<td>15.13</td>
<td>12.50</td>
<td></td>
</tr>
<tr>
<td>EOC - 505 - *</td>
<td>22.50</td>
<td>41.0</td>
<td>15.14</td>
<td>1.25</td>
<td>#20</td>
<td>42.50</td>
<td>6.50</td>
<td>6.50</td>
<td>30.00</td>
<td>19.25</td>
<td>34.75</td>
<td>19.63</td>
<td>16.50</td>
<td></td>
</tr>
<tr>
<td>EOC - 545 - *</td>
<td>30.50</td>
<td>42.00</td>
<td>15.14</td>
<td>1.50</td>
<td>#24</td>
<td>43.75</td>
<td>9.00</td>
<td>9.00</td>
<td>30.00</td>
<td>27.25</td>
<td>35.75</td>
<td>27.50</td>
<td>24.63</td>
<td></td>
</tr>
<tr>
<td>EOC - 575 - *</td>
<td>36.50</td>
<td>48.00</td>
<td>15.29</td>
<td>2.00</td>
<td>#32</td>
<td>49.75</td>
<td>9.00</td>
<td>9.00</td>
<td>36.00</td>
<td>32.75</td>
<td>41.75</td>
<td>33.50</td>
<td>29.25</td>
<td></td>
</tr>
<tr>
<td>EOC - 700 - *</td>
<td>38.38</td>
<td>51.00</td>
<td>15.40</td>
<td>2.00</td>
<td>#32</td>
<td>52.75</td>
<td>9.00</td>
<td>9.00</td>
<td>34.00</td>
<td>43.50</td>
<td>43.50</td>
<td>34.50</td>
<td>32.50</td>
<td></td>
</tr>
</tbody>
</table>

Note: AIHTI reserves the right to make reasonable design changes without notice.
HYDRAULIC MOTOR DATA

<table>
<thead>
<tr>
<th>Model</th>
<th>No. of Motors</th>
<th>Motor Connections</th>
<th>RPM</th>
<th>Displacement IN³/Rev</th>
<th>Min.Oil Flow Required (GPM)</th>
<th>Min.Operation Pressure (PSI)</th>
<th>Maximum Pressure (PSI)</th>
<th>Size</th>
<th>Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOC-190</td>
<td>1</td>
<td></td>
<td>1725</td>
<td>.43</td>
<td>3.75</td>
<td>200</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-220</td>
<td>1</td>
<td>SAE-12 1 - 1/16 -12</td>
<td>1725</td>
<td>.43</td>
<td>3.75</td>
<td>200</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-249</td>
<td>1</td>
<td></td>
<td>1725</td>
<td>.43</td>
<td>3.75</td>
<td>200</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-337</td>
<td>1</td>
<td></td>
<td>1725</td>
<td>.43</td>
<td>3.75</td>
<td>200</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-375</td>
<td>1</td>
<td></td>
<td>1725</td>
<td>.43</td>
<td>3.75</td>
<td>200</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-505</td>
<td>2</td>
<td></td>
<td>1.12</td>
<td>.68</td>
<td>6.00</td>
<td>400</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-545</td>
<td>2</td>
<td></td>
<td>1.12</td>
<td>.68</td>
<td>6.00</td>
<td>400</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-575</td>
<td>2</td>
<td></td>
<td>1.12</td>
<td>.68</td>
<td>6.00</td>
<td>400</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
<tr>
<td>EOC-700</td>
<td>2</td>
<td></td>
<td>1.12</td>
<td>.68</td>
<td>6.00</td>
<td>400</td>
<td>3000</td>
<td>SAE</td>
<td>A 2 Bolt .625</td>
</tr>
</tbody>
</table>

HYDRAULIC MOTOR NOTES:

1) Standard units are supplied with a bi-directional hydraulic gear motor for the fan drive. The gear motor requires an external case drain be used during operation. The external case drain should be connected directly to hydraulic reservoir or a return line with not greater than 10PSIG back pressure. (NOTE: Failure to properly connect and use the external case drain during motor operation could result in motor failure and external leakage of hydraulic fluid.

2) Hydraulic motor flow requirements are provided with an efficiency rating of approximately 85%. Pressure requirements are calculated theoretical minimum operating requirements.

3) Shaft adapters are used to bridge the differences in length between the fan and hydraulic motor.

4) Maximum degree of fluid contamination, class 18/15 according to ISO 4406. Therefore, it is recommended to use a filter with retention rating of B20>. For longer life, it is recommended to use class 17/14 achievable with filter B10>-100.

5) Fan rotation is clockwise when facing the motor shaft.

6) Optional displacement motors available upon request.

7) American industrial reserves the right to enact changes to hydraulic motor, brand, type, ratings, port sizes, or any additional non-specified attribute for standard products without notice. All specific requirements will be honored without change pending availability.

Electrical Temperature controller with Bulb Well Assembly (for Air / Liquid Coolers)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>310-4011</td>
<td>TC-511 with 6-Foot Capillary Tube & Bulb Well</td>
</tr>
<tr>
<td>310-4002</td>
<td>TC-511 with 20-Foot Capillary Tube & Bulb Well</td>
</tr>
<tr>
<td>310-2025</td>
<td>Replacement Bulb Well TC-511</td>
</tr>
</tbody>
</table>

NOTES: To estimate the sound level at distances other than 7 feet (2.1 meters) from the cooler, add 6 db for each halving of distance, or substract 6 db for each doubling of the distance.
Receiving / Installation

a) Inspect unit for any shipping damage before uncrating. Indicate all damages to the trucking firms' delivery person and mark it on the receiving bill before accepting the freight. Make sure that the core and fan are not damaged. Rotate the fan blade to make sure that it moves freely. The published weight information located in this brochure is approximate. True shipment weights are determined at the time of shipping and may vary. Approximate weight information published herein is for engineering approximation purposes and should not be used for exact shipping weight. *Since the warranty is based upon the unit date code located on the model identification tag, removal or manipulation of the identification tag will void the manufacturers warranty.*

b) When handling the heat exchanger, special care should be taken to avoid damage to the core and fan. All units are shipped with wood skids for easy forklift handling.

c) Standard Enamel Coating: American Industrial provides its standard products with a normal base coat of oil base air cure enamel paint. The enamel paint is applied as a temporary protective and esthetic coating prior to shipment. While the standard enamel coating is durable, American Industrial does not warranty it as a long-term finish coating. It is strongly suggested that a more durable final coating be applied after installation or prior to long-term storage in a corrosive environment to cover any accidental scratches, enhance esthetics, and further prevent corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

d) Special Coatings: American Industrial offers as customer options, Air-Dry Epoxy, and Heresite (Air-Dry Phenolic) coatings at additional cost. American Industrial offers special coatings upon request, however American Industrial does not warrantee coatings to be a permanent solution for any equipment against corrosion. It is the responsibility of the customer to provide regular maintenance against chips, scratches, etc... and regular touch up maintenance must be provided for long-term benefits and corrosion prevention.

e) American Industrial recommends that the equipment supplied should be installed by qualified personnel who have solid understanding of system design, pressure and temperature ratings, and piping assembly. Verify the service conditions of the system prior to applying any air cooled heat exchanger series cooler. If the system pressure or temperature does not fall within the parameters on model rating tag located on the heat exchanger, contact our factory prior to installation or operation.

g) Heat exchanger should be securely fastened using the mounting foot brackets (included). All mounting holes should be used to secure unit into place. Optional horizontal mounting with vertical airflow is allowable. Heat exchanger unit must be set into a fabricated channel type frame with provision for additional motor support for heavy motors. Since the units are normally operated in the vertical position (horizontal airflow) reinforced motor support is suggested.

h) Connections should be made in “one pass” or “Two Pass” configurations exactly as indicated in the “piping hook up” illustration above. The process flow entering the “Fluid IN” port and exiting the “Fluid OUT” port eliminates air pockets and assures that the unit will stay completely flooded. Flexible hose can be applied to reduce the risk of core failure due to thermal expansion or system vibration. Piping alignment and support is required for hoses longer than four feet in length and for piping exerting more than 20 lbs of dynamic force. It is recommended that filtration be located ahead of the heat exchanger to prevent excessive backpressure and clogging.

i) With respect to the heat exchangers nozzle size, flow
line sizes should be sized to handle the appropriate flow rate and system pressure drop requirements, normally flow line rates of about 8-12 feet per second and inlet pressure less than 100psig are experienced. If the flow line size is larger than the heat exchanger nozzle size, additional pressure loss beyond the published pressure loss data may occur.

j) Electric motors should be connected only to supply source of the same characteristics as indicated on the electric motor information plate. Prior to starting, verify that the motor and fan spin freely without obstruction. Check carefully that the fan turns in the correct rotation direction (normally counter clockwise) from the motor side (fan direction arrow). Failure to operate the fan in the proper direction could reduce performance or cause serious damage to the heat exchanger or other components.

k) It is important to apply the catalog recommended flow rate for the hydraulic motor that corresponds with the specific model being used. A case drain is required for hydraulic motor installation. Failure to connect case drain can result in motor failure. The proper flow rate and direction to the hydraulic motor are critical to ensure fan direction and RPM. Exceeding the recommended RPM could result in fan failure and cause severe damage to the heat exchanger. See fan rotation (page 178).

Maintenance

Regular maintenance intervals based upon the surrounding and operational conditions should be maintained to verify equipment performance and to prevent premature component failure. Since some of the components such as, motors, fans, fan guards, etc... are not manufactured by American Industrial, maintenance requirements provided by the manufacture must be followed.

a) Inspect the entire heat exchanger and motor/fan assembly for loosened bolts, loose connections, broken components, rust spots, corrosion, fin/coil clogging, or external leakage. Make immediate repairs to all affected areas prior to restarting and operating the heat exchanger or its components.

b) Heat exchangers operating in oily or dusty environments will often need to have the coil cooling fins cleaned. Oily or clogged fins should be cleaned by carefully brushing the fins and tubes with water or a non-aggressive degreasing agent mixture. *Note: Cleaning agents that are not compatible with copper, brass, aluminum, steel or stainless steel should not be used.* A compressed air or a water stream can be used to dislodge dirt and clean the coil further. Any external dirt or oil on the electric motor and fan assembly should be removed. **Caution: Be sure to disconnect the electric motor from its power source prior to doing any maintenance.**

c) In most cases it is not necessary to internally flush the coil. In circumstances where the coil has become plugged or has a substantial buildup of material, flushing the coil with water or a solvent may be done. Flushing solvents should be non-aggressive suitable for the materials of construction. Serviceable Core® models can be disassembled and inspected or cleaned if required.

d) Most low horsepower electric motors do not require any additional lubrication. T.E.F.C. air ventilation slots should be inspected and cleaned regularly to prevent clogging and starving the motor of cooling air. To maintain the electric motor properly see the manufactures requirements and specifications.

e) Fan blades should be cleaned and inspected for tightness during the regular maintenance schedule when handling a fan blade care must be given to avoid bending or striking any of the blades. Fan blades are factory balanced and will not operate properly if damaged or unbalanced. Damaged fan blades can cause excessive vibration and severe damage to the heat exchanger or drive motor. Replace any damaged fan with an American industrial suggested replacement.

f) Air cooled exchanger cabinets are constructed using 7ga. through 18ga. steel that may be bent back into position if damaged. Parts that are not repairable can be purchased through American Industrial.

g) Coil fins that become flattened can be combed back into position. This process may require removal of the coil from the cabinet.

h) It is not advisable to attempt repairs to brazed joints of a brazed construction coil unless it will be done by an expert in silver solder brazing. Brazed coils are heated uniformly during the original manufacturing process to prevent weak zones from occurring. Uncontrolled reheating of the coil may result in weakening of the tube joints surrounding the repair area. In many instances brazed units that are repaired will not hold up as well to the rigors of the system as will a new coil. American Industrial will not warranty the repair area. In many instances brazed units that are repaired will not hold up as well to the rigors of the system as will a new coil. American Industrial will not warranty or be responsible for any repairs done by unauthorized sources. Manipulation in any way other than normal application will void the manufactures warranty.

i) Solely at the request of customers, American Industrial provides direct acting internal inlet port to outlet port bypass relief valves as an additional safe guard against surge flow and over pressurization of the heat exchanger. However, American Industrial does not specify, recommend, suggest, guarantee, or warrantee the internal relief valve or its performance to safe guard the heat exchanger from damage or prevent failure due to excessive flow or over pressurization. It is the ultimately the sole responsibility of the customer/user to verify with the original equipment manufacture all conditions associated with applying an additional system relief valve prior to application.
Serviceable Core® Maintenance
Units containing a Serviceable Core® have bolted manifold covers that can be removed for cleaning or repair purposes.

Servicing Sequence
American Industrial has gone to great lengths to provide components that are repairable. If the heat exchanger core requires internal cleaning or attention the following steps will explain what must be done to access the internal tubes. Be sure to order gasket kits or repair parts prior to removal and disassembly to minimize down time.

a) To clean the internal tubes first remove all connection plumbing from the unit.

b) Be sure the unit is drained of all water etc...

c) Place the heat exchanger in an area that it can be accessed from all sides. Remove the core from the cabinet if required. (EOC, AOCH, AOCS).

d) Mark the cover ① and tube-sheet ② for both covers so that they can be replaced into the same position when finished. Remove the manifold cover bolts ③ and hardware and place them into a secure place.

e) The manifold covers are tightly compressed and may need some prying to separate them from the gasket ④, physically remove the cover assemblies ① from both sides.

f) The tubes ⑤ and turbulators ⑥ are now accessible for cleaning. Note: turbulators are installed on EOC, AOCH & AOCS cores only. If you need to remove the turbulator that runs through the tubing, it will be necessary to first squeeze the flattened end of the protruding turbulator ③, so that on end will fit through the tube. From the opposite end pull the turbulator ⑥ out. You may need to use pliers to grip and pull the turbulators ③ out, especially if there is debris lodged inside. As the turbulators ⑤ come out, most of the dirt will too, so be prepared. It is suggested that gloves be worn when handling the turbulators ⑥ as they may be sharp.

g) If there are any leaking tubes ⑤ you may plug them by carefully forcing a soft metal plug into the hole and tapping it tight. You may in some cases weld the leaking tube shut however, care should be taken since excessive heat may cause surrounding tube joints to loosen and leak.

h) When finished cleaning or repairing, be sure to replace ALL of the turbulators ⑥ back into any open tubes ⑤. When the turbulators ⑥ protrude from the opposite end flatten them again so they are tight and cannot be removed.

i) When finished reattach the manifold covers ① in the same position they were removed, using new gaskets ④, bolts ②, and hardware. We suggest using a torque wrench to final tighten the bolts ③.

j) Torque Specifications: For 5/16" bolts 22-23 ft-lbs, for 3/8" bolts to 38-42 ft-lbs. Since bolts and hardware can physically fatigue during application we suggest new bolt kits be used when reassembling.